美国GNB蓄电池材料离子运输的现象
(1)中子衍射(ND)
结合**熵模拟分析方法可以得到电极材料中的Li+扩散通道的信息
(2)核磁共振(NMR)
测得一些元素的核磁共振谱随热处理温度的变化,测得Li+的自扩散系数
Gobet等利用脉冲梯度场的NMR技术表征了β-Li3PS4固体中1H、6.7Li、31P核磁共振谱随热处理温度的变化,测得了Li+的自扩散系数,与之前报道的Li+电导率数量级一致。
(3)原子力显微镜系列技术(AFM)
利用针尖原子与样品表面原子间的范德华作用力来反馈样品表面形貌信息。AFM具备高的空间分辨率(约0.1)和时间分辨能力,由于它不探测能量,并不具有能量分辨能力,与1996年首次应用于锂离子电池研究中,
Zhu等采用固态电解质通过磁控溅射的方法制备了一个全电池,再通过in situ AFM的手段检测TI02负极表面形貌随所加载的三角波形电压的变化。
材料微观力学性质
电池材料一般为多晶,颗粒内部存在应力。在充放电过程中锂的嵌入脱出会发生晶格膨胀收缩,导致局部应力发生变化,进一步会引起颗粒以及电极的体积变化、应力释放、出现晶格堆垛变化、颗粒、电极层产生裂纹。
(1)原子力显微镜系列技术(AFM)与纳米压印技术以及在TEM中与纳米探针、STM探针联合测试
观察形貌特征,在采用固态电池时可以进行原位力学特性、应力的测量
Jeong等采用AFM原位观察了HOPG基面在循环伏安过程中形成的表面膜的厚度
(2)SPM探针
用途:研究SEI膜的力学特性
本文为大家介绍锂离子电池的工作原理是什么,首先为大家介绍下锂离子电池的概念,锂离子电池:是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。电池一般采用含有锂元素的材料作为电极,是现代高性能电池的代表。
锂系电池分为锂电池和锂离子电池。手机和笔记本电脑使用的都是锂离子电池,通常人们俗称其为锂电池,而真正的锂电池由于危险性大,很少应用于日常电子产品。
美国GNB蓄电池的原理
锂离子电池以碳素材料为负极,以含锂的化合物作正极,没有金属锂存在,只有锂离子,这就是锂离子电池。锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称。锂离子电池的充放电过程,就是锂离子的嵌入和脱嵌过程。在锂离子的嵌入和脱嵌过程中,同时伴随着与锂离子等当量电子的嵌入和脱嵌(习惯上正极用嵌入或脱嵌表示,而负极用插入或脱插表示)。在充放电过程中,锂离子在正、负极之间往返嵌入/脱嵌和插入/脱插,被形象地称为“摇椅电池”。
锂离子电池的原理
当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。
一般锂电池充电电流设定在0.2C至1C之间,电流越大,充电越快,同时电池发热也越大。而且,过大的电流充电,容量不够满,因为电池内部的电化学反应需要时间。就跟倒啤酒一样,倒太快的话会产生泡沫,反而不满。
在接触模式下,以恒力将探针扎入膜,便可得到该处扎入深度随力的响应曲线,进而可以得到杨氏模量等信息。
环保部日前宣布,将2014年**环境日中国主题为“同呼吸 共奋斗”,旨在推进以防治PM2.5为重点的大气污染防治工作;倡导全社会群策群力,共同行动,积极参与到防治大气污染的行动中来。
从环保部发布的一季度空气质量状况显示,今年1-3月份,中国74个城市总体达标天数比例为44.4%,首要污染物为PM2.5、PM10,其中PM2.5平均超标率为49.1%,PM10平均超标率为33.6%。环保部门表示,除了天气原因以外,此次重污染根本原因还是污染物排放大,其中,日常发电、工业生产以及汽车尾气等带来的污染物,是造成城市空气污染的主要原因。在我国大力发展信息化建设的今天,数据中心成为城市能耗“大户”,在全球IT总能耗中,数据中心就占到了40%。随着产业的**发展,数据中心的节能减排不仅关乎经济效益,更关乎社会效益。
如何衡量数据中心能耗
能源使用效能值(PUE)是国际公认的衡量数据中心节能减排的一个重要指标。据**的报道,国外**的数据中心的PUE值可以达到1.06,而我们国家IDC的PUE平均值则在2.5以上,这意味着IT设备每耗一度电,就有多达1.5度电被数据中心的基础设施所消耗,这一现象在中小规模数据中心中更为严重,通常其PUE的测量值普遍在3左右。这表明有大量的电能被消耗在供电系统、制冷系统等基础设施上,而用于IT设备中的电能仅为总耗电的33%。
对于影响数据中心PUE值的供电、制冷两大基础设施而言,供电系统的能效是问题的根本,因为供电系统的低效加剧了制冷系统的负担,双倍地导致了PUE指标的攀升。而数据中心所有营运负载几乎都是通过UPS电源来供电的,因此如何进一步挖掘UPS系统的工作效率,将是**改善数据中心供电系统乃至整个数据中心PUE指标的核心途径。
有问题请拨打电话 18001283863
(王浩为你服务)
梅兰日兰蓄电池:www.meilandianchi.com